Proof

1 Prove, by counter-example, that each of the following statements is false.
a For all positive real values of $x, \sqrt[3]{x} \leq x$.
b For all positive integer values of $n,\left(n^{3}-n+7\right)$ is prime.
2 Use proof by contradiction to prove that $\sqrt{\pi}$ is irrational.
(You may assume that π is irrational).
3 Find a counter-example to prove that the statement

$$
\begin{equation*}
" 15 x^{2}-11 x+2 \geq 0 \text { for all real values of } x " \tag{4}
\end{equation*}
$$

is false.
4 a Given that $n=2 m+1$, find and simplify an expression in terms of m for $n^{2}+2 n$.
b Hence, use proof by contradiction to prove that if $\left(n^{2}+2 n\right)$ is even, where n is an integer, then n is even.

5 a Prove that if the equation

$$
\begin{equation*}
k \cos x-\operatorname{cosec} x=0 \tag{5}
\end{equation*}
$$

where k is a constant, has real solutions, then $|k| \geq 2$.
b Find the values of x in the interval $0 \leq x \leq 360$ for which

$$
\begin{equation*}
3 \cos x^{\circ}-\operatorname{cosec} x^{\circ}=0 \tag{3}
\end{equation*}
$$

6 Use proof by contradiction to prove that there are no positive integers, x and y, such that

$$
\begin{equation*}
x^{2}-y^{2}=1 \tag{6}
\end{equation*}
$$

7 For each statement, either prove that it is true or find a counter-example to prove that it is false.
a If a and b are irrational and $a \neq b$, then $(a+b)$ is irrational.
b If m and n are consecutive odd integers, then $(m+n)$ is divisible by 4 .
c For all real values of $x, \cos x \leq 1+\sin x$.
8 a Show that if $\log _{2} 3=\frac{p}{q}$, then

$$
\begin{equation*}
2^{p}=3^{q} \tag{2}
\end{equation*}
$$

b Use proof by contradiction to prove that $\log _{2} 3$ is irrational.
c Prove, by counter-example, that the statement
"if a is rational and b is irrational then $\log _{a} b$ is irrational" is false.

9 The function f is defined by

$$
\mathrm{f}: x \rightarrow \frac{x-2}{4 x}, x \in \mathbb{R}, x \neq 0
$$

a Find an expression for the inverse function, $\mathrm{f}^{-1}(x)$, and state its domain.
b Prove that there are no real values of x for which

$$
\begin{equation*}
\mathrm{f}(x)=\mathrm{f}^{-1}(x) . \tag{4}
\end{equation*}
$$

